

Borehole Imaging Special Interest Group

SPWLA BHI SIG Dip Data Delivery Standard

Peter Barrett & Tegwyn J Perkins Halliburton Geoactive Ltd

2023 SPWLA Fall Topical Conference

Agenda

- Founding of the Borehole Imaging (BHI) SIG
- Motivation
- Several "What is ...?" Questions
- The Dip Data Exchange Standard


Founding of the BHI SIG

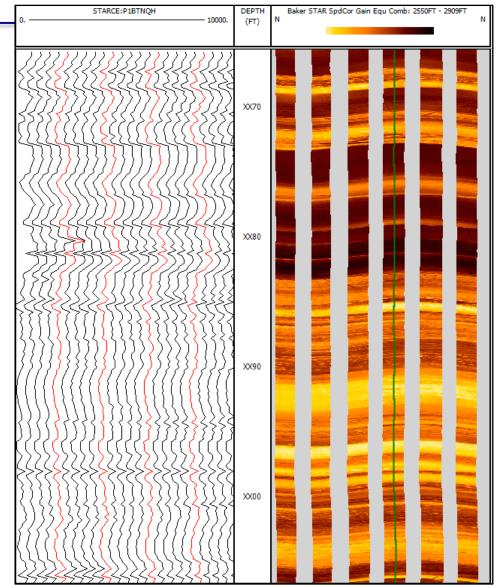
- Two events took place...
 - September 2021 EAGE 4th Borehole Geology Workshop
 - October 2021 "Curry Friday"
 - Present: Peter Barrett, Bernd Ruehlicke and Tegwyn Perkins

Current Board

Chair: Christian Rambousek, NiMBUC Geoscience Vice Chair: Chandramani Shrivastava, SLB Secretary: Tegwyn Perkins, Geoactive Ltd Treasurer: Peter Barrett, Halliburton

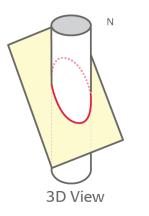
Contact them at: bhi_sig_comm@spwla.org

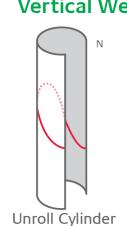
Borehole Imaging Special Interest Group

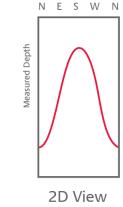

Motivation

- This initiative aims to provide a Human-Readable Dip Data Exchange format that enables all borehole imaging/dip software to utilize ALL available information related to an interpretation.
- The current work focuses on the following features:
 - Fracture and Bedding feature identification
 - Interpretation of Complete and Partial Sinewaves
 - Breakouts
 - Tensile Fractures
 - Truncations

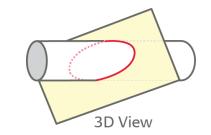
What is a Borehole Image?

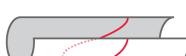

- False colour pseudo-image of the borehole wall produced from high-resolution petrophysical measurements.
- Image data acquired by tools with sets of pads or rotating transducers and sondes/sensors.
- Conveyed by wireline, pipe or LWD.
- Oriented using accelerometers and/or magnetometers.
- Images are usually viewed unwrapped:
 - Features inclined to the borehole (i.e. planes) appear as sinewaves.

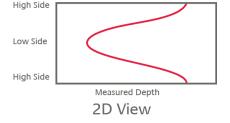




Viewing of unwrapped images

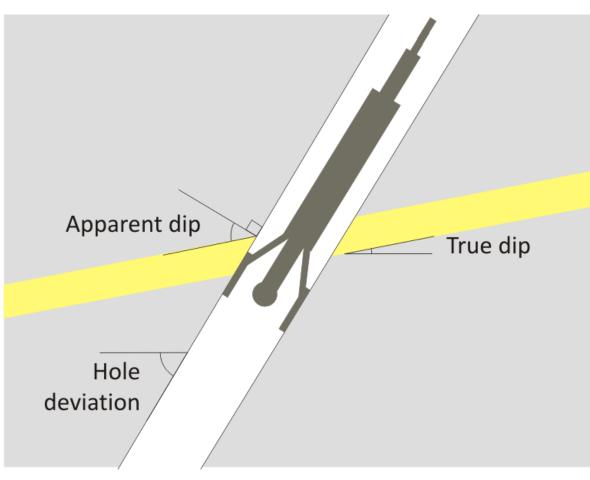

- Consider a plane intersecting a borehole.
- If we "unwrap" the borehole then the 3D plane is represented by a 2D sinewave.
 Vertical Well





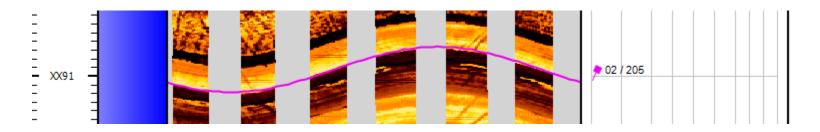
Horizontal Well

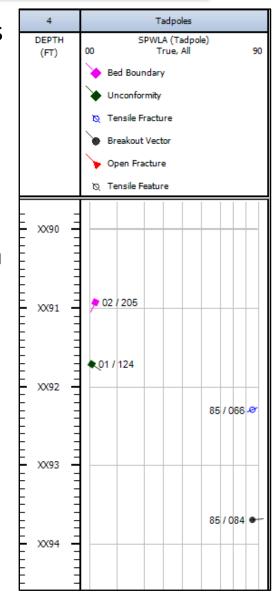
Unroll Cylinder



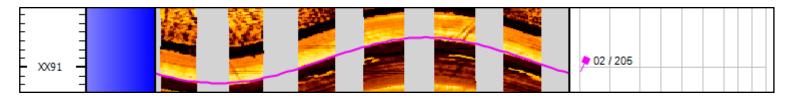
2023 SPWLA Fall Topical Conference

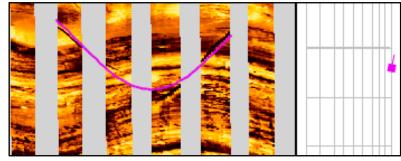
What are Apparent and True Dips?


- Apparent Dip refers to the angle at which rock layers or bedding planes are inclined within a borehole.
- True Dip is a measurement that indicates the actual angle at which rock layers or bedding planes are inclined beneath the Earth's surface.
- We determine Apparent Dip from Borehole Images and then use the position of the borehole and imaging tool to derive the True Dip.


What is a Dip?

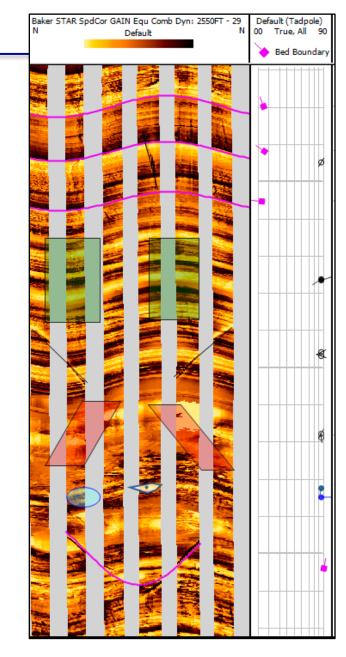
- A "Dip" is the normal vector to a 3D plane expressed in polar coordinates and is represented by Measured Depth and two angles: Dip Angle and Dip Azimuth:
 - Dip Angle is maximum angle measured from horizontal normal to Strike.
 - Dip Azimuth is direction of maximum dip.
- Dips are typically represented on a log plot by a "Tadpole" where the head is the Dip Angle and the tail points towards the Dip Azimuth or on a stereogram as a pole to the plane they represent.


• NB: Strike refers to the azimuth of the horizontal line formed by the intersection of a geological feature with the Earth's surface.

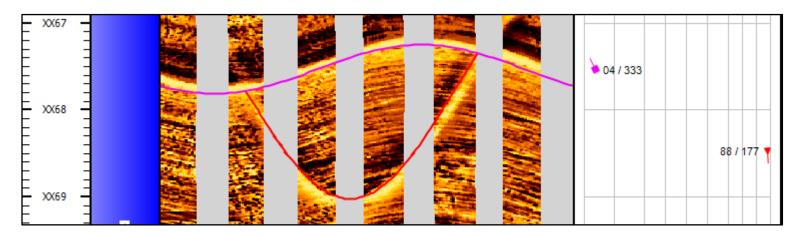


Planar Features

 Planar features are typically associated with beds, boundaries and fractures.


 Sometimes planar features are only visible over part of an image – we call these Partial Dips.

Not every feature is sinusoidal!


- Not every feature can be represented by a sinewave.
- Consequently, we employ different methods of picking and representing Breakouts, Tensile Fractures, Convex Fractures, Holes, Vugs, etc.
 - Breakouts = Rectangles
 - Tensile Fractures = Lines
 - Convex Fractures = Parallelograms
 - Holes = Ellipsoids
 - Vugs = Polygon
- Each of these are described by clearly defined mathematical properties.

Feature Relationships

- In addition to selecting individual features, it is possible to define relationships between them.
- Interpreters can identify truncation, abutting and containership relationships between data types.

• In this example, we have truncated a fracture into a bedding plane up-hole.

The Dip Data Delivery Standard

- This standard considers all the attributes that go into each pick so that a complete recreation of it can be made.
- In addition to the "dip data" there is specific header information required for accurate representation and we have listed that here.
- We employ the LAS 3.0 standard for data encapsulation:
 - Comma-delimited => Load as ASCII, if necessary.
 - LAS 2.0 does not (officially) support text strings.
 - Binary formats, such as DLIS, were discounted because not all dip interpretation software can read them.
 - We didn't want to design "Yet another new file format" based on JSON/XML.
- NB: North is True North (not Magnetic or Grid or "Custom").

LAS 3.0 Header Information

- This is the **minimum** information we would expect to include:
 - Well Name
 - UWI/API (for NAM)
 - Field Name
 - Country
 - Company/Operator
 - Latitude
 - Decimal; +/-
 - Longitude
 - Decimal; +/-
 - Date of Log Data Acquisition
 - YYYY-MM-DD format (- or /)

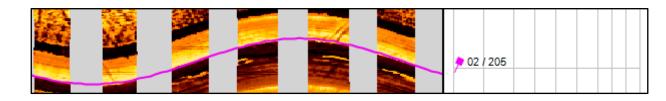
- Magnetic Field Intensity
- Magnetic Inclination
- Magnetic Declination
- Magnetic Model
- Datum and Elevations all available
- Mud Type useful for understanding fractures
- STRT, STOP, STEP=0.0 and NULL

13

LAS 3.0 Log Data - #1

- This is the **minimum** information we would expect to include:
- Measured Depth (i.e. depth along the borehole)
 - Units: feet or metres
- UID: a unique identification number for the pick. This can be an integer or NULL.
 - If NULL, then truncations cannot be included.
- True Dip Angle
 - Corrected for magnetic declination.
 - Units: degrees
 - Scaled 0-90 degrees
- True Dip Azimuth, corrected for magnetic declination.
 - Units: degrees
 - Scaled 0-360 degrees

- Dip Type
 - Units: None
 - Stored as a string
- Dip Quality
 - Indication of the quality of the auto-pick
 - \circ Scaled 0 1; 1 is best
 - Units: None
- Apparent Dip Angle
 - Corrected for magnetic declination
 - Units: degrees
 - \circ Scaled 0-90 degrees
- Apparent Dip Azimuth
 - \circ Corrected for magnetic declination
 - Units: degrees
 - Scaled 0-360 degrees
- Fall Topica

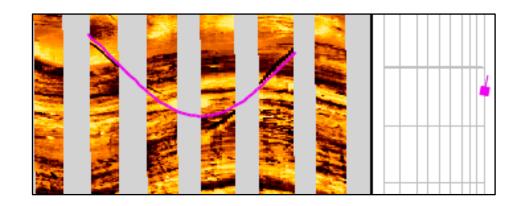

LAS 3.0 Log Data - #2

- This is the **minimum** information we would expect to include:
- Orientation Reference for Data Acquisition
 - This can be North, HighSide or LowSide
 - Units: None
 - \circ No Abbreviations allowed.
 - NB: North is True North (not Magnetic or Grid)
- Inclinometry: DEVI, HAZI, RB and P1AZ/P1NO
 - Units: degrees
 - Corrected for Magnetic Declination

- Depth of Investigation
 - Stored w/ each pick
 - Units: inches

• Caliper

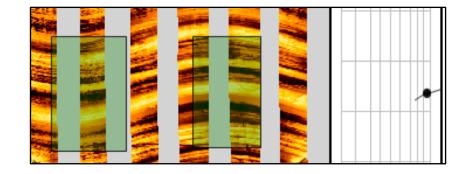
- \circ Units: inches
- Diameter not Radius
- Must NOT include Depth of Investigation



Partial Dips

- Partial Dip attributes will be stored as a pair of curves for the Apparent Dip Azimuth Start and Apparent Dip Azimuth End angles; otherwise use NULL.
- If multiple partial dips are to be specified for the same depth, then they will be specified by additional Apparent Dip Azimuth Start/End curves.

• Apparent Dip Azimuth Start

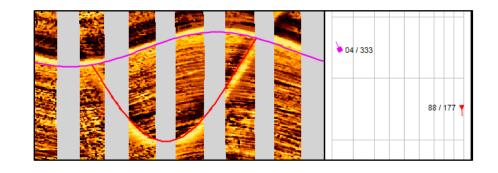

- Units: degrees
- Limited between 0 degrees and 360 degrees
- Apparent Dip Azimuth End
 - Units: degrees
 - Limited between 0 degrees and 360 degrees

Breakouts

- Breakouts will be characterized by the following information...
- Opposing breakouts do not have to have the same UID.
- Measured Depth (i.e. depth along the borehole) at mid-point of feature (i.e. Centered Depth)
 - Units: feet or metres
- Breakout Height along borehole axis
 - Units: feet or metres
- Breakout Width
 - Units: degrees
- Apparent Dip Azimuth, corrected for magnetic declination.

Tensile Fractures

• Tensile Fractures will be characterized by the following information...

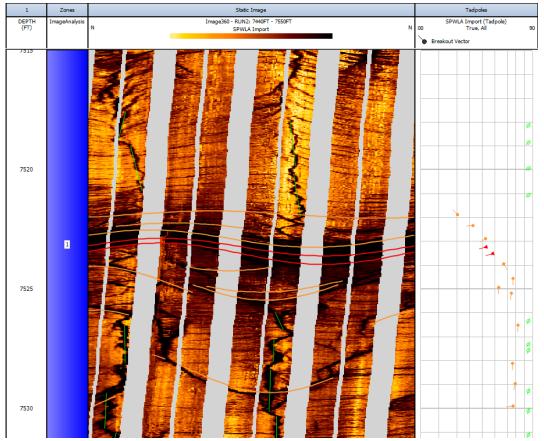

- Measured Depth (i.e. depth along the borehole) at mid-point of feature (i.e. Centered Depth)
 - Units: feet or metres
- Tensile Fracture Height along borehole axis
 - Units: feet or metres
- Omega Angle, angle measured from axis clockwise.
 - Units: degrees
 - Limited between -180 degrees to 180 degrees
- Apparent Dip Azimuth, corrected for Magnetic Declination.

Truncations

- Truncations will be characterized by the following information...
- Unique UID for each abutting feature for truncated sinewaves to distinguish between multiple picks at the same depth in case of truncation.
- We just need to have two additional attributes:
- Truncation Uphole UID
 - The unique UID for the uphole truncating dip
- Truncation Downhole UID
 - The unique UID for the downhole truncating dip

NB: Ask software companies to find a solution for getting the correct depth for truncation.

Example Data


- Our example is based on the Utah Forge dataset
- We have chosen Well: 58-32 (aka MU-ESW1); Run #2
- Image logs can be found here:
 - <u>https://gdr.openei.org/submissions/1076</u>
 - The file "Well 58-32 FMI Runs 1 and 2 Logs.zip" contains two FMI runs.
 - The page also links to a wealth of other data.
 - The file "58-32_logs.zip" contains the original Techlog dips stored in:
 - University_of_Utah_MU_ESW1_FMI_HD_7440_7550ft_Dip_Final_2ndRun.las

Energy and Geoscience Institute at the University of Utah. (2017). Utah FORGE: Well 58-32 Schlumberger FMI Logs DLIS and XML files [data set]. Retrieved from https://dx.doi.org/10.15121/1464529.

Example Data

- The example dataset provided is based on the original SLB Run#2 picks w/ the addition of bed/fracture combination to demonstrate the truncation feature.
- The example LAS file can be downloaded from >><u>here</u><< Just click the link!

Commercial Software Implementation

- Whilst developing the standard, we incorporated it in Interactive Petrophysics.
- Please let the BHI SIG committee know if other software products have included it by contacting us at:

bhi_sig_comm@spwla.org

-Data Sourc Well			
	(1) BH-H-16	~	
Tool	Baker UltrasonicXplorer: 2550FT	\sim	
Pick Set	SPWLA	\sim	Select Columns
Be Be O	a Types ed Data Types: Select All ed Boundary (2) reakout Vector (1) pen Fracture (1) ensile Fracture (1)	Un	SPWLA Select All Select None Well
Options	nconformity (1)		Top Depth Bottom Depth Thickness
Delimiter Edit Col	Comma Separated (LAS 3)	~	OK Cancel

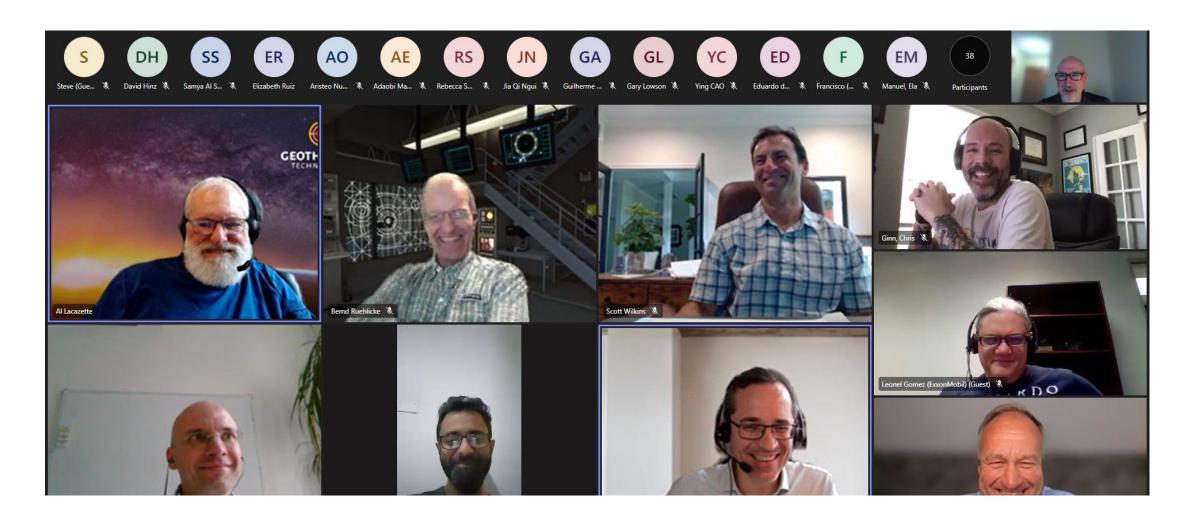
Suggested Header Mnemonics

• WELL	Well Name
• UWI/API	UWI/API
• FN	Field Name
• CTRY	Country
• COMP	Company/Operator
• LATD	Latitude: Decimal ; +/-
• LOND	Longitude: Decimal ; +/-
• DATE	Date of Log Data Acquisition: in YYYY-MM-DD format (- or /)
• MFIN	Magnetic Field Intensity
• MINC	Magnetic Inclination
• MDEC	Magnetic Declination
MMOD	Magnetic Model
• DFT	Drilling Fluid Type
• LMF	Log Measured From (e.g. Drill Floor, Mean Sea Level, Ground Level, etc.)

...

Suggested Curve Mnemonics

• DEPTH	Measured Depth	• DOI	Depth of Investigation
• UID	Unique Pick ID	• ACAL	Caliper
• DPTR	True Dip Angle		
• DPAZ	True Dip Azimuth	• AAS1	Apparent Azimuth Start 1
 ADIP 	Apparent Dip Angle	• AAE1	Apparent Azimuth End 1
• AAZI	Apparent Dip Azimuth	• AAS2	Apparent Azimuth Start 2
		• AAE2	Apparent Azimuth End 2, etc.
• DIPT	Dip Туре		
 DIPQ 	Dip Quality	• BRKH	Breakout Height
		• BRKW	Breakout Width
OREF	Orientation Reference (North, HighSid	le	
	or LowSide)	• TFRH	Tensile Fracture Height
• DEVI	Hole Deviation	• TFRW	Tensile Fracture Width
• HAZI	Hole Azimuth	• TFRO	Omega Angle, angle measured from axis clockwise.
• RB	Relative Bearing		
 P1AZ/P1NO 	Pad 1 Azimuth/North		



Thanks

- We would like to thank the team that helped define the standard:
 - Christian Rambousek, NiMBUC Geoscience
 - Chandramani Shrivastava, SLB
 - Bastian Roters, NiMBUC Geoscience
 - Bernd Ruehlicke, Eriksfiord
 - Peter Barrett, Halliburton
 - Tegwyn Perkins, Geoactive Ltd

And thanks to the BHI SIG...

